miR-21 and KLF4 jointly augment epithelial-mesenchymal transition via the Akt/ERK1/2 pathway

نویسندگان

  • Chen-Hai Liu
  • Qiang Huang
  • Zhi-Yuan Jin
  • Cheng-Lin Zhu
  • Zhen Liu
  • Chao Wang
چکیده

miR-21 induces epithelial-mesenchymal transition (EMT) of human cholangiocarcinoma (CCA) cells. However, the mechanism by which this occurs remains unclear. In the present study, high throughput platform was employed to detect the genes that are differential expressed in QBC939 cells transfected with a hsa-miR-21 antagomir or control vectors. The EMT-related Krüppel-like factor 4 (KLF4) gene was downregulated after miR-21 was knocked down. Overexpression of miR-21 upregulated KLF4, Akt, ERK and mesenchymal cell markers (N-cadherin and vimentin), downregulated the expression of epithelial cell marker E-cadherin and reduced cell migration and invasion. Immunohistochemistry showed that KLF4, pAkt and pERK were upregulated in tumor xenografts transfected with miR-21 mimics. Inhibitors of the PI3K-Akt and ERK1/2 pathways, LY294002 and U0126, significantly suppressed the EMT phenotype. The present data demonstrated that overexpression of miR-21, accompanied with KLF4, augmented the EMT via inactivation of Akt and ERK1/2 pathways. In conclusion, we have identified a novel mechanism that may be targeted in an attempt to relieve the malignant biological behavior of CCA cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Antagonism of miR-21 Reverses Epithelial-Mesenchymal Transition and Cancer Stem Cell Phenotype through AKT/ERK1/2 Inactivation by Targeting PTEN

BACKGROUND Accumulating evidence suggested that epithelial-mesenchymal transition (EMT) and cancer stem cell (CSC) characteristics, both of which contribute to tumor invasion and metastasis, are interrelated with miR-21. MiR-21 is one of the important microRNAs associated with tumor progression and metastasis, but the molecular mechanisms underlying EMT and CSC phenotype during miR-21 contribut...

متن کامل

MicroRNA-7 Inhibits Tumor Metastasis and Reverses Epithelial-Mesenchymal Transition through AKT/ERK1/2 Inactivation by Targeting EGFR in Epithelial Ovarian Cancer

Epidermal growth factor receptor (EGFR) overexpression and activation result in increased proliferation and migration of solid tumors including ovarian cancer. In recent years, mounting evidence indicates that EGFR is a direct and functional target of miR-7. In this study, we found that miR-7 expression was significantly downregulated in highly metastatic epithelial ovarian cancer (EOC) cell li...

متن کامل

Suppression of epithelial-mesenchymal transition in hepatocellular carcinoma cells by Krüppel-like factor 4

Hepatocellular carcinoma (HCC) is one of the most malignant and lethal human cancers. Epithelial-mesenchymal transition (EMT) enhances the carcinogenesis of HCC, and therapies targeting EMT appear to be promising treatments. We have previously shown that Krüppel-like factor 4 (KLF4) suppressed EMT of HCC cells through downregulating EMT-associated proteins. Here, we examined the roles of microR...

متن کامل

The SNAIL/miR-128 axis regulated growth, invasion, metastasis, and epithelial-to-mesenchymal transition of gastric cancer

miR-128 is expressed in various tumors, but its expression and function in gastric cancer have not been defined. Thus, the goal of this study was to characterize miR-128 in gastric cancer. We found first that miR-128 is down-regulated in gastric cancer cell lines and tissues, and this dysregulation is correlated with DNA methylation and the transcription factor SNAIL. Using prediction tools, we...

متن کامل

MiR-21-5p Links Epithelial-Mesenchymal Transition Phenotype with Stem-Like Cell Signatures via AKT Signaling in Keloid Keratinocytes

Keloid is the abnormal wound healing puzzled by the aggressive growth and high recurrence rate due to its unrevealed key pathogenic mechanism. MicroRNAs contribute to a series of biological processes including epithelial-mesenchymal transition (EMT) and cells stemness involved in fibrotic disease. Here, using microRNAs microarray analysis we found mir-21-5p was significantly up-regulated in kel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 50  شماره 

صفحات  -

تاریخ انتشار 2017